Announcements

1) Bonus on exam l is 10 points extra credit, due in one week
2) How \#3 to appear later this week, due Thursday next week

Recall: imaginary solutions to $r^{2}=\alpha$ when $\alpha<0$.

Then solutions for r will "purely imaginary", of the form $r= \pm i \sqrt{-\alpha}$.

Wend still live realvalued Solutions, though!

Remember the following Mackaurin series:

$$
\begin{aligned}
& e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \\
& \cos (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!} \\
& \sin (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}
\end{aligned}
$$

Relate these functions by computing

$$
\begin{aligned}
& e^{i x}=\sum_{n=0}^{\infty} \frac{(i x)^{n}}{n!} \\
&=\sum_{n=0}^{\infty} \frac{i^{n} x^{n}}{n!} \\
& i^{0}=1, i^{1}=i, i^{2}=-1, \\
& i^{3}=-i, i^{4}=1, \ldots-
\end{aligned}
$$

Split the sum into even and odd exponents:

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{i^{n} x^{n}}{n!} & =\sum_{n \text { even }} \frac{i^{n} x^{n}}{n!} \\
& +\sum_{n \text { odd }} \frac{i^{n} x^{n}}{n!}
\end{aligned}
$$

write an even number as

$$
n=2 k, k=0,1,2, \ldots
$$

odd number as $n=2 k+1$.

The sum becomes

$$
\begin{aligned}
& \sum_{k=0}^{\infty} \frac{i^{2 k} x^{24}}{(2 k)!}+\sum_{k=0}^{\infty} \frac{i^{2 k+1} x^{2 k+1}}{(2 k+1)!} \\
&=i \sum_{k=0}^{\infty} \frac{i^{2 k} x^{2 k+1}}{(2 k+1)!} \\
& i^{2 k}=\left(i^{2}\right)^{k}=(-1)^{k}
\end{aligned}
$$

We then get

$$
\begin{aligned}
& e^{i x}=\sum_{n=0}^{\infty} \frac{(i x)^{n}}{n!} \\
& =\sum_{k=0}^{\infty} \frac{(-1)^{4} x^{2 k}}{(2 k)!}+i \sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k+1}}{\left(2 k_{1}+1\right)!} \\
& =\cos (x)+i \sin (x)
\end{aligned}
$$

(x is a real number).

Consequence:
If $e^{i x}=\cos (x)+i \sin (x)$,
then $e^{-i x}=\cos (-x)+i \sin (-x)$
$=\underbrace{\cos (x)}_{\text {cos even }}-\underbrace{i \sin (x)}_{\sin \text { odd }}$
So $e^{i x}+e^{-i x}=2 \cos (x)$, and

$$
\cos (x)=\frac{e^{i x}+e^{-i x}}{2}
$$

Similarly,

$$
\sin (x)=\frac{e^{i x}-e^{-i x}}{2 i}
$$

